
Confessions of
a Platform Engineer,
Edge Computing
Rollout Edition

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 1

*Any resemblance between this book and a certain burning bird is a mere coincidence.
Pay no attention to it.

01Introduction

Fear not! Most of our thinking
is horizontal and applies to many
different types of edge environments.

We recently completed an IT-infrastructure project to design and launch an edge platform
infrastructure for the company I work for – a company that manages movie theaters.

Mistakes bring insight, so every downturn had its share of
learning, which was good. But after the project was complete,
we put together this document – a detailed account of the major
milestones – documenting the ups and downs and, honestly,
the information we wished we had going into it.

Like many large IT projects we brought big ambitions. But equally,
many large IT projects come with a few honest mistakes, which we
definitely made.

This write-up covers the first twelve months of our edge computing platform roll-out,
scoping all the way to when we started scaling workloads globally. The roll-out took
us from our manual, costly, time-consuming, and innovation-prohibitive management
process of in-theater applications to a robust platform that our application teams love
and will have in place long-term.

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 2

The company I work for is called Movie Theater Corporation.

The last few years have been a bit topsy-turvy as we — like other companies with a core
business dependent on physical locations — need to adapt to a new digital landscape
with the visitor experience at the center of it. This has made our marketing and sales
departments put pressure on us (and on the application teams). As a result, we need
to utilize innovative applications in our theaters if we want to survive.

Our production environment consists of movie theaters as well as two central clouds
where we host our back-end systems.

Modern movie theaters rely heavily on software for many things: alarm and temperature
systems, high-end soda dispensers, theater room management (curtains?), and digital
rights management. Each of these applications needs storage, networking, and compute
power to execute. The applications we had running in our theaters when I started
working for Movie Theater Corp. were predominately legacy software running on
Windows. But we needed to refresh both our hardware and software in order to turn
our theaters, as well as our online presence, into one omnichannel digital platform. The
time had come to migrate our applications into software containers. And guess who
was the lucky person tasked with doing this?

Our Company

We’re a global movie
theater chain with more

than 750 theaters in
30 different countries.

What I refer to as ’edge’ throughout
this write-up, is really our movie theaters.

M O V I E T H E AT E R
C O R P O R AT I O N

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 3

Key takeaways:
Our application
teams love and
cherish the developer
experience from
the cloud and would
like to recreate it as
much as possible also
when developing
in-theater applications.
So that, right there,
was our goal.

Platform/IT teams,
and application teams!

Remember the value of working
together across organizational

boundaries and respecting
the wants and needs of both.

The surroundings of an edge project
are unique. This includes how to take
on security, distributed deployments,

monitoring and observability
of applications and infrastructure

— and how to scale such
an environment using a platform.

The value is created by
the application layer and
the edge is no exception.

My Role

You guessed it. The job fell to me, the lead platform engineer.

Together with my team, I set out to create a platform for managing the applications
running in our theaters. In an attempt to avoid siloed teams leading to stove-piped
solutions and processes, our IT manager decided to keep the whole platform team as one.

My team (IT and platform) strives toward being enablers for the application teams.
In this project, we had a chance to truly exceed the expectations of the application teams
as we aimed to create a cloud-like experience for application operations in our theaters.
After all, we have a mutual interest in making application orchestration efficient, secure,
and robust whether the application is running in a centralized data center, in the check-
out line of the ticket office, or at the loading dock of the theater building.

While our cooperation sometimes has its ups and downs, our most important peers
in the organization are the application teams.

Our CIO sometimes refers to the application teams as “the value-streamers” to really
accentuate where the value is created in our organization. And she’s not wrong.
The applications are what create a unique, innovative, and comfortable experience
for visitors and employees in our theaters.

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 4

Setting goals and getting started 5
Directions from leadership 5
Platform + application = the perfect team 6
Getting the ball rolling 6

Piloting in the lab 7
Wiring up the lab 7
Remote management of infrastructure is different 7
Attaching the pipeline to deploy an application 8

Going into production 9
Installing clusters across the theaters 9
Deploying the applications 10
Monitoring the applications 10

Our first live infrastructure upgrade 11
Upgrading the infrastructure in flight 11
Layers interacting 12
Resolving issues across layers 12

Rolling out to all theaters 13

Piling on applications 14
Packaging the first third-party application 14
The need for multi-tenancy arises 14

The Saturday night security incident 15
Stolen hardware 15

Extended cloud capabilities and ability to scale 16
5 considerations for running edge pilots 16

Table of Contents

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 5

02Setting goals
and getting started

Historically, all software in our theatres was part of products delivered by our vendors that
had been locked into their hardware platforms.

Thing is, each of them had their own unique operations stack on which to deploy
software and monitor its health. This created an environment that was heavily siloed
and cost a small fortune to operate. And it didn’t let our application teams reuse any
of their application lifecycle tools they had for the cloud.

Directions from leadership

Our strategic leadership was looking for a more agile way for application teams to deliver
new features using existing tools and a way to test brand new digital solutions in the
theaters without tedious, manual, and time-consuming efforts to truck-roll new hardware.

Our CTO wanted us to think about our theater locations
like digital platforms, where application teams could
manage applications in the theatres much easier and at
a lower cost. They also wanted IT/platform teams to be
able to centrally manage the lifecycle of the infrastructure
in a fully automated and secure way.

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 6

Platform + application = the perfect team

In order to give our leadership team what they wanted, we had to work closely with
our application team.

If the new system had to give both the IT/platform and application development and
operations what they wanted, there was no way around it. We had to think as one.

Together with the application team, we put together a requirements specification to get
started. We did this with the understanding that nothing was set in stone – we might
iterate tons of times on the requirements as we built the solution. As long as we were
learning and heading in the right (and same) direction, that was good. But with any
new project, you have to start somewhere.

Getting the ball rolling

For that reason, we decided to start with a small lab trial with the constituent parts in place.

We wanted to get a feel for how the interactions between our existing teams,
the operational tools, and the platform would work. If all went smoothly, we would
then go ahead and roll out the platform to a few of our chosen theaters along with
a first, production-grade application. Then, the fun would really get started.

Together, the two teams told the strategic leadership about our approach and initial
architecture. Thankfully, they approved of our method, gave us the green light,
and we could get started.

The edge environment will be key in both the digitalization
of the in-theater experience and in our efforts to create
an omnichannel strategy utilizing both our customer’s
in-theater interactions and their digital ones.
CIO

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 7

03Piloting in the lab

After the initial planning, it was finally time to get real and set up the physical
infrastructure in our lab site.

We have a local test-theater that is a replica of our medium-sized theaters in terms of
infrastructure and we use it for all lab activities. (Sadly, our test theater is only that – no
movie screens or popcorn machines for us workers.)

Wiring up the lab

Physically installing infrastructure takes time, and that was no different at our test site.

We settled for clusters comprised of three edge computers as this reflected the compute
needs of our medium-sized theaters.

Three-node clusters allowed us to provide enough fail-over redundancy to meet
our SLAs. It covered outage-style scenarios, and was also a convenient setup for
doing node-by-node upgrades on the infrastructure layer (operating system, etc).

And we decided to keep it simple and as real-life as possible, using the tools we
normally use in our private datacenters (i.e., networked installation using PXE and
tooling from our favourite Linux vendor to keep the OS up to date).

Remote management of infrastructure is different

The installation of the first computers went off without a hitch.

But that’s not a surprise – we’re pretty good at that. Still, throughout the process, we tried
to identify which of the steps could work remotely. This was something we had to do if
we wanted this project to work, as we’re talking about hundreds of locations with edge
computers behind NATs and firewalls. If we tried to do maintenance on site, by hand, it would
take forever.

But as we went about this, we realized we had to start looking for a more specific solution
that would allow us to manage huge numbers of remote hosts and make that part of our
operational capabilities.

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 8

Attaching the pipeline to deploy an application

Once we had the plumbing and the infrastructure set up, we huddled with the application
team and see how we could connect with their tooling.

We decided to try a simple application that tracks the number of people entering a theater
using a camera feed and a simple AI-based application.

In our first try, we looked at the steps it takes to manually deploy the application.

Pretty soon, we integrated our CI/CD pipeline, which gave us a fully
automated flow from the build steps to our lab cluster. We had to
ensure the current continuous deployment (CD) setup could be
extended to include enough configuration to do edge-specific things,
like deploy to specific locations.

With some minimal adjustments we were able to allow for declarative definitions of not
only what the applications look like, but where (and under which circumstances) they
should be deployed.

The close collaboration with the application team was great, and we quickly leveraged their
previous work to get things done.

The close collaboration with the application team was great,
and we quickly leveraged their previous work to get things done.

Now that the application team has a fully automated
release process, we can connect the platform directly
to that. And voilà! An edge, as automated as the cloud.
IT Team leader

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 9

04Going into production

Now we were ready to bring our pilot to a small number (25) of production sites.

We replicated the setup from the pilot
(three edge computers in each theater),
got them wired up, and started on our
first production installs.

Installing clusters across the theaters

Scaling the infrastructure fleet management solution that we chose was definitely
a learning experience.

Thankfully, with some small adjustments, we managed to get the clusters installed
across the theaters supported by automation. Unfortunately, this process exposed
a huge grey area around who does what across our organization. But regardless of
our internal dirty laundry, we still needed a streamlined large-scale rollout of our
infrastructure and edge platform.

The infrastructure team had already wired up the network, installed Linux, and made
sure that networking was in place.

By leveraging a system with integrated call-home features we were able to bring up
the site clusters in all theaters in a couple of minutes per edge computer. We were
relieved, as this could have been a multi-week project if we’d had to physically install
the media in each and every theater.

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 10

Deploying the applications

We noticed that as the number of sites grew, the nature of the deployment changed.
Our very first (and very naïve) pilot deployment to a single theater did not work well,
as the number of deployable theaters grew.

We were aware that not all applications needed to run in every location, but the
application setup in each site was based on various standards like site size (number
of theater rooms, size of snack bar, etc.). We needed to tailor the deployment to
support these parameters. Once that was established, we could assign responsibility,
decide which applications should run where, and ensure this was all done in
a controlled, trackable manner.

We split the definition of the application itself and the definition of where the application
should run.

By doing this, we avoided lengthy meetings and the creation of a ridiculous amount
of manual steps. This alignment allowed us to rely instead on the application team’s
existing GitOps approach, which not only saved time, but also delighted our CTO as
tooling we’d already invested in for the cloud could be leveraged again at the edge.

Monitoring the applications

After the deployment, we still lacked insight into the application health.

Deploying an application to the edge is kind of like throwing the application over a wall
and hoping for the best unless you have observability capabilities to monitor the health
of a specific application in a specific theater. Luckily, we did.

That sort of application health monitoring across many locations
requires collaboration with the operations teams to ensure a coherent
view of where applications are running. It also allows us to use data
we gain from the monitoring also in integration with existing tools.

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 11

05Our first live
infrastructure upgrade

We were pretty thrilled to see the applications running in production for a couple
of weeks and performing to expectations.

We held off on maintenance (upgrades, patches) during this period in order to observe
a stable environment. But once that was set, we needed to do our first infrastructure
update in production.

Upgrading the infrastructure in flight

Updates for the operating system and supporting applications (including the container
runtime) had been piling up during our change freeze.

We had to start working through the list, no matter how long it was. Using our infrastructure
fleet management solution, we brought the operating system and system-level applications
up to the appropriate version.

We were careful to tease apart the management
of the supporting infrastructure (OS, container runtime)
and the running applications and assign responsibility
to the platform team and the application team respectively.

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 12

Layers interacting

As part of the application deployment, we configured synthetic probes running
at each site that continuously reported the application response times.

This proved to be hugely valuable as we could now see degraded application
performance at the sites. This was confirmed by our service desk who received reports
of the same issues from local theater employees.

End-user performance of applications usually depends on a number of contributing
factors up and down the stack.

With that in mind, we huddled together with the application team to figure out what
was going on. Thankfully, the probes pointed to specific containers that had degraded
performance so we knew exactly where to dig.

Resolving issues across layers

By correlating logs across the operating system and application layers, we figured out
that the performance issues came out of some unexpected interactions between the
container runtime and the kernel scheduler that ended up introducing significant delays
in response times from our containerized applications.

Key to our successful root-cause analysis was our cross-team collaboration.

It was easy to correlate between the application layer (where we started) and
the infrastructure (where we found the issue) since we had made sure to keep references
between the applications in terms of which edge computer-specific instances were
running on, and which container runtime instance and kernel on the infrastructure layer
was leveraged by a specific application. Another factor that shortened the resolution time
was that our edge platform gave us direct access to the logs without a manual login.

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 13

06Rolling out
to all theaters

Now that we were seven months in, we felt we had made significant and meaningful
progress. We had something to celebrate!

With the ability to perform targeted deployments, we were ready to begin
the automated rollout of our deployment across 30 countries. The difference
in time-to-deployment from our previous manual approach was exhilarating.

We really mastered the process of monitoring and observing the in-theater
infrastructure applications, so we were confident we could quickly identify
any bumps in the road during the process.

This meant a whole new level of consistency for our colleagues and visitors using
the digital services in the theaters. To say we were excited was an understatement.

Even better was this helped us avoid unnecessary and time-consuming involvement
from those of us on the platform team in the form of endless meetings.

In addition, we could also confidently let the application team utilize
a fully automated deployment process, which enabled us to increase
deployment frequency even more.

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 14

After patting ourselves on the back for the successful deployment of our first in-house
application at a global scale, we got back to it.

First challenge tackled, we needed to onboard a third-party party application vendor
to supply us with an AI video analytics application to help determine which movie
theaters needed additional cleaning services.

Packaging the first third-party application

For this second application, the biggest difference was that we didn’t develop
the code in-house.

Instead, we took tested releases from a vendor according to a release schedule.
We then packaged the application to optimize how it ran on our infrastructure and
ensured stellar monitoring and observation.

Since the application was fully containerized we knew that merely scheduling, starting,
and stopping it would be easy as pie. But the application needed a secure way to
distribute sensitive data (application credentials) to the edge video application from
a central location. To do this, we had to have distributed secrets management features.

The need for multi-tenancy arises

In addition, we knew we couldn’t let
the camera application write to storage in
an uncontrolled way, as that might affect
(starve out) other applications running
on the same cluster. For data protection
purposes, we needed the application
to be kept separate from our in-house
application for data protection purposes.

As a result, we decided to run this second
application as a separate tenant, with strict
resource separation.

This provided deep isolation in terms of
enforced resource limits, network traffic
separation, and tenant specific encryption
against data extraction.

07Piling on applications

You’ve got to think
about multi-tenancy
and resource constraints
for IT running out in
the theaters. Also, data
protection between
applications needs to
be seriously considered.
IT Team leader

08

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 15

The Saturday night
security incident

Currently, we manage the lifecycle of two applications through our CI/CD and we have
monitoring across infrastructure and application layers.

Guess it was the perfect time for a security incident…

Stolen hardware

Just our luck – we get a call on Saturday night from a movie theater reporting the theft
of two edge computers after hours.

The computers stored sensitive data including application credentials and keying
material. Our main concern was the potential extraction of sensitive data from
the physical hard drives.

That was one of those moments when you get genuinely happy by reading the docs.

Turns out that in our edge platform’s secrets component, there was a built-in protection
for these kind of events. Talk about a relief. All sensitive data was encrypted and could
not be accessed by brute force. We also used a knob to lock down the site completely
until the incident had been analyzed. While we still were missing the computers,
we could be assured that no information from them could be put in wrong hands.

Remember to study carefully which data is distributed
to the theaters and how we protect that using the platform
features. If we wouldn’t have routines in place for physical
theft it wouldn’t have ended well, since perimeter security
is non-existent.
IT Team leader

Confessions of a Platform Engineer, Edge Computing Rollout Edition avassa.io | 16

09Extended cloud capabilities
and ability to scale

At long last, we have a platform that enables our application team to deploy edge
on-prem applications.

Many of these applications have a counterpart in the central cloud. We worked on
a unified pipeline so that the last deployment step manages central versus edge
deployments without negatively impacting the developer experience. We also bridge
underpinning API services for things like storage, pub/sub bus, and secrets across
central applications and edge applications. This was necessary since by nature, different
components are used for the constrained edge versus the resource-rich central cloud.

Previously we had two separate teams, one for cloud and one for edge.

Now that these two teams are united into a holistic application team covering
the organization’s needs, we were able to unify edge and central application
monitoring. And we’ve never looked back.

5 considerations for running edge pilots

In retrospect, we succeeded with several aspects of the project, while there are a few
things we could’ve done differently. During our next iteration, we will keep the following
considerations in mind:

1.
2.

4.

5.

3.

What are the characteristics of the edge environment? Remember that when
piloting, it’s important that you know the characteristics of your edge sites so
they can be mimicked in the pilot environment.

Setup relevant goals. When working “from the bottom up”, it’s challenging
to prove value and benefits early on. Therefore, it’s important to set up
relevant goals that align with the nature of the project roll-out.

Consider the complete stack and associated lifecycles. The edge has
several layers: local infrastructure, hosts, OS, container runtime, edge cluster,
container applications etc. All layers must be considered in order not
to avoid any unpleasant surprises.

Wrap up and evaluate the pilot. Reporting lessons learned and achievements
throughout the organization are key. This will be easy as pie if considerations
1 and 2 are carefully considered.

Use-case-driven or platform-driven approach? We felt pressure from
application teams to see applications deployed, without really caring about
any platforms. Meanwhile, platform teams want to see generic functions,
no matter the application. This must be better balanced, and solid
collaboration across teams is key.

	Where are we on monitoring and observability today?
	Conclusion

